33 research outputs found

    Effects of alpha fetoprotein on escape of Bel 7402 cells from attack of lymphocytes

    Get PDF
    BACKGROUND: Involvement of AFP against apoptosis of tumor cell has been implicated in its evasion of immune surveillance. However, the molecular events of immune escape mechanisms are still unknown. The major observations reported here relate to a possible mechanism by which heptoloma Bel 7402 cells escape immune surveillance in vitro. METHODS: Western blotting and a well-characterized cofocal scanning image were performed to analyze the expression of Fas/FasL and caspase-3 in co-cultured Bel 7402 and Jurkat cells. RESULTS: After co-culture with Jurkat cells, up-regulated Fas and reduced FasL expression could be observed. Treatment with AFP could remarkably inhibit the elevated Fas and, whereas, induce the FasL expression in co-cultured Bel 7402 cells. Cells co-culture could induce the expression of caspase-3 in both cells line. The elevated caspase-3 in Bel 7402 cells was abolished following the treatment of AFP. The expression of caspase-3 was elevated in co-cultured Jurkat cells treated with AFP. No detectable change on the expression of survivin was examined in both cells line. Monoclonal antibody against AFP treatment alone did not obviously influence the growth of cells, as well as the expression of Fas/FasL and caspase-3. However, the effect of AFP could be blocked by antibody. CONCLUSIONS: our results provide evidence that AFP could promote the escape of liver cancer cells from immune surveillance through blocking the caspase signal pathway of tumor cells and triggering the Fas/FasL interaction between tumor cells and lymphocytes

    Prediction and Optimization of Blasting-Induced Ground Vibration in Open-Pit Mines Using Intelligent Algorithms

    No full text
    Prediction and parameter optimization are effective methods for mine personnel to control blast-induced ground vibration. However, the challenge of effective prediction and optimization lies in the multi-factor and multi-effect nature of open-pit blasting. This study proposes a hybrid intelligent model to predict ground vibrations using a least-squares support vector machine (LSSVM) optimized by a particle swarm algorithm (PSO). Meanwhile, multi-objective particle swarm optimization (MOPSO) was used to optimize the blast design parameters by considering the vibration of particular areas and the bulk rate of blast fragmentation. To compare the prediction performance of PSO-LSSVM, a genetic-algorithm-optimized BP neural network (GA-BP), unoptimized LSSVM, and BP were used, by applying the same database. In addition, the root-mean-squared error (RMSE), the mean absolute error (MAE), and the correlation coefficient (r) were regarded as the evaluation indicators. Furthermore, the optimization results of the blasting parameters were obtained by quoting the established vibration prediction model and bulk rate proxy model in MOPSO and verified by field tests. The results indicated that the PSO-LSSVM model provided the highest efficiency in predicting vibrations with an RMSE of 1.954, MAE of 1.717, and r of 0.965. Furthermore, the blasting vibration can be controlled by using the two-objective optimization model to obtain the best blasting parameters. Consequently, this study can provide more specific recommendations for vibration hazard control

    An equivalent reliability index approach for surrogate model-based RBDO

    No full text

    Simultaneous Elimination of Formaldehyde and Ozone Byproduct Using Noble Metal Modified TiO2 Films in the Gaseous VUV Photocatalysis

    No full text
    Simultaneous removal of low concentration formaldehyde (HCHO) and ozone byproduct was investigated in the gaseous VUV (vacuum ultraviolet) photocatalysis by using noble metal modified TiO2 films. Noble metal (Pt, Au, or Pd) nanoparticles were deposited on TiO2 films with ultrafine particle size and uniform distribution. Under 35 h VUV irradiation, the HCHO gas (ca. 420 ppbv) was dynamically degraded to a level of 10~45 ppbv without catalyst deactivation, and over 50% O3 byproduct was in situ decomposed in the reactor. However, under the same conditions, the outlet HCHO concentration remained at 125~178 ppbv in the O3 + UV254 nm photocatalysis process and 190~260 ppbv in the UV254 nm photocatalysis process. And the catalyst deactivation also appeared under UV254 nm irradiation. Metallic Pt or Au could simultaneously increase the elimination of HCHO and ozone, but the PdO oxide seemed to inhibit the HCHO oxidation in the UV254 nm photocatalysis. Deposition of metallic Pt or Au reduces the recombination of h+/e− pairs and thus increases the HCHO oxidation and O3 reduction reactions. In addition, adsorbed O3 may be partly decomposed by photogenerated electrons trapped on metallic Pt or Au nanoparticles under UV irradiation

    Recovery of Gold and Iron from Cyanide Tailings with a Combined Direct Reduction Roasting and Leaching Process

    No full text
    Cyanide tailings are the hazardous waste discharged after gold cyanidation leaching. The recovery of gold and iron from cyanide tailings was investigated with a combined direct reduction roasting and leaching process. The effects of reduction temperature, coal dosage and CaO dosage on gold enrichment into Au-Fe alloy (FexAu1−x) were studied in direct reduction roasting. Gold containing iron powders, i.e., Au-Fe alloy, had the gold grade of 8.23 g/t with a recovery of 97.46%. After separating gold and iron in iron powders with sulfuric acid leaching, ferrous sulfate in the leachate was crystallized to prepare FeSO4·7H2O with a yield of 222.42% to cyanide tailings. Gold enriched in acid-leaching residue with gold grade of 216.58 g/t was extracted into pregnant solution. The total gold recovery of the whole process reached as high as 94.23%. The tailings generated in the magnetic separation of roasted products, with a yield of 51.33% to cyanide tailings, had no toxic cyanide any more. The gold enrichment behaviors indicated that higher reduction temperature and larger dosage of coal and CaO could promote the allocation of more gold in iron phase rather than in slag phase. The mechanism for enriching gold from cyanide tailings into iron phase was proposed. This work provided a novel route to simultaneously recover gold and iron from cyanide tailings

    Degradation of Thiol Collectors Using Ozone at a Low Dosage: Kinetics, Mineralization, Ozone Utilization, and Changes of Biodegradability and Water Quality Parameters

    No full text
    Ozonation at a high O3 dosage can achieve high efficiencies in removing flotation reagents but it has a low ozone-utilization rate. The ozonation of potentially toxic thiol collectors (potassium ethyl xanthate (EX), sodium diethyl dithiocarbamate (SN-9), O-isopropyl-N-ethyl thionocarbamate (Z-200) and dianilino dithiophoshoric acid (DDA)) was investigated in an ozone-bubbled reactor at a low O3 dosage of 1.125 mg/(min·L). The degradation kinetics, mineralization, ozone utilization, changes of biodegradability, and water quality parameters were studied, and the degradation behaviors of four collectors were compared. Thiol collectors could be effectively degraded with a removal ratio of >90% and a mineralization ratio of 10‒27%, at a low O3 dosage. The ozonation of thiol collectors followed the pseudo first-order kinetics, and rate constants had the order of kSN-9 > kEX > kZ-200 > kDDA. The Z-200 and DDA were the refractory flotation reagents treated in the ozonation process. After ozonation, the biodegradability of EX, SN-9, and DDA solutions was remarkably raised, but the biodegradability of Z-200 only increased from 0.088 to 0.15, indicating that the Z-200 and its intermediates were biologically persistent organics. After ozonation, the solution pH decreased from 10.0 to 8.0‒9.0, and both the conductivity and oxidation-reduction potential increased. The ozone utilization ratio in decomposing thiol collectors was above 98.41%, revealing almost complete usage of input O3. The results revealed that thiol collectors could be effectively degraded by O3, even at a low dosage, but their degradation behaviors were quite different, due to intrinsic molecular properties

    Study on Solidification and Stabilization of Antimony-Containing Tailings with Metallurgical Slag-Based Binders

    No full text
    Blast furnace slag (BFS), steel slag (SS), and flue gas desulfurized gypsum (FGDG) were used to prepare metallurgical slag-based binder (MSB), which was afterwards mixed with high-antimony-containing mine tailings to form green mining fill samples (MBTs) for Sb solidification/stabilization (S/S). Results showed that all MBT samples met the requirement for mining backfills. In particular, the unconfined compressive strength of MBTs increased with the curing time, exceeding that of ordinary Portland cement (OPC). Moreover, MBTs exhibited the better antimony solidifying properties, and their immobilization efficiency could reach 99%, as compared to that of OPC. KSb(OH)6 was used to prepare pure MSB paste for solidifying mechanism analysis. Characteristics of metallurgical slag-based binder (MSB) solidified/stabilized antimony (Sb) were investigated via X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). According to the results, the main hydration products of MSB were C-S-H gel and ettringite. Among them, C-S-H gel had an obvious adsorption and physical sealing effect on Sb, and the incorporation of Sb would reduce the degree of C-S-H gel polymerization. Besides, ettringite was found to exert little impact on the solidification and stabilization of Sb. However, due to the complex composition of MSB, it was hard to conclude whether Sb entered the ettringite lattice

    Characterization and Hydration Mechanism of Ammonia Soda Residue and Portland Cement Composite Cementitious Material

    No full text
    The use of ammonia soda residue (ASR) to prepare building materials is an effective way to dispose of ASR on a large scale, but this process suffers from a lack of data and theoretical basis. In this paper, a composite cementitious material was prepared using ASR and cement, and the hydration mechanism of cementitious materials with 5%, 10%, and 20% ASR was studied. The XRD and SEM results showed that the main hydration products of ASR-cement composite cementitious materials were an amorphous C-S-H gel, hexagonal plate-like Ca(OH)2 (CH), and regular hexagonal plate-like Friedel’s salt (FS). The addition of ASR increased the heat of hydration of the cementitious material, which increased upon increasing the ASR content. The addition of ASR also reduced the cumulative pore volume of the hardened paste, which displayed the optimal pore structure when the ASR content was 5%. In addition, ASR shortened the setting time compared with the cement group, and the final setting times of the pastes with 5%, 10%, and 20% ASR were 30 min, 45 min, and 70 min shorter, respectively. When the ASR content did not exceed 10%, the 3-day compressive strength of the mortar was significantly improved, but the 28-day compressive strength was worse. Finally, the hydration mechanism and potential applications of the cementitious material are discussed. The results of this paper promote the use of ASR in building materials to reduce CO2 emissions in the cement industry

    Evaluation of Water Uptake and Root Distribution of Cherry Trees Under Different Irrigation Methods

    No full text
    Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm
    corecore